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~ Summary of Research:
— The purpose of this study was to develop voice authentication

techniques which can be used over packet switched networks
sithout the limitations of a single fixed reference phase.

The results of this study are presented in the two manuscripts
which have been or will be published (in February 1979) in the
IEEE Acoustics, Speech and Signal Processing Journal.*

~- The results of this study were significant in several respects.
First of all, the largest data base of controlled conditions

but extemporaneous human speech in existance was developed for
the project. Secondly, a real-time processing capability was
developed for processing this data base of 40 hours of continuous
speech. Finally, with the restriction of clean speech (not
prucessed over a telephone or with noise), text-independent
speaker recognition results nearly matching those for text-
dependent studies were achieved by averaging over 30-40 second

speech segments.L

/
-

l) J.D. Markel, Beatrice T. Oshika, and A.H. Gray, Jr.,
Long-Term Feature Averaging for Speaker Recognition,
IEEE Trans. Acoust., Speech, and Signal Proc., vol.
ASSP-25, no. 4, August 1977.

2) J.D. Markel, and S.B. Davis, Text-Independent Speaker

Recognition from a Large Linguistically Unconstrained
Time-Spaced Data Base, to be published in IEEE Trans.

Acoust., Speech, and Signal Proc., February 1979.
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Long-Term Feature Averaging for
Speaker Recognition

JOHN D. MARKEL, MEMBER, 1EEE, BEATRICE T. OSHIKA, anp AUGUSTINE H. GRAY, JR.. MEMBER, IFFI

Abstract-The potential benefits of long-term parameter averaging
for speaker recognition were investigated. Parameters studied were
pitch, gain, and reflection coefficients. Parameter varability was
computed over various averaging lengths from one frame averaging (in
effect, no averaging) to 1000 frame averaging (about 70 s of speech). Tt
was demonstrated that the between-to-within speaker variance ratio,
measured over several speakers, was significantly increased by perform-
ing long-term averaging of the parameter sets. The reflection coefficient
averages for &, and &, respectively, vore shown to produce the highest
variance ratios.

I. INTRODUCTION

HERE have been several studies on the choice of acoustic

features in speaker recognition tasks [14], [19], [22].
Average fundamental frequency has been tound to be a useful
discriminating feature [13], as have gain measurements |2},
[10] and long-term speech spectra [4]-[6]. [9]. Perceptual
studies indicate that “there is at least weak evidence that a
voice that is distinctive to listen to also has distinctive spectro-
graphic patterns” [20], and that dimensions of “characteristic

Manuscript received May 13, 1976; revised December 13, 1976 and
March 15, 1977. This research was supportcd by the Advanced Re-
scarch Projects Agency of the Department of Defense and was moni-
tored by the Office of Naval Research under Contract NO0014-73-C-
0221. ;

J. D. Markel and B. T, Oshika are with the Speech Communications
Research Laboratory, Inc., Santa Barbara, CA 93109.

A. H. Gray, Jr., is with the Speech Communications Research Labora-
“tory, Inc., Santa Barbara, CA 93109 and the Department of Flectrical
Engineering and Computer Science, University of California, Santa
Barbara, CA 93109.

pitch™ and “characteristic loudness™ may be posited to differ-
entiate among speakers [21]. These speaker characteristics
can be distinguished from the acoustic cues which signal lin-
guistic elements, eg., phonemes or words. For example, the
realization of the word “bit” by a female child is acoustically
very difierent from the same word pronounced by an adult
male, yet the words are generally understood to be equivalent
while the speakers are clearly different. It appears, then, that
listeners adapt to speakers’ voice characteristics (as well a
their linguistic characteristics).

All this suggests that there are long-term characteristics
which can be used in text-independent speaker recognition
tasks. Such characteristics include long-term averages related
to fundamental trequency. gain, and spectral averages.

The motivation for long-term averaging in text-independen:
speaker recognition is based upon a result trom statistical sam-
pling theory.

We assume that {p(/)} defines statistically independent,
wdentically distributed samples of the parameter p with true
mean u,, and variance uf,. (For exampie. {k (i)} corresponds
to the reflection coefficient &A; samples for each analysis
frame.) If x = (p(f)) defines a feature based upon long-ierm
averaging of p. where

I Ly-1
Ppap== 3 pG. a
L, i=0

and L, is the number of voiced analysis frames used in the aver
aging, then the variance of x is given in terms of the origina

Copyright © 1977 by The Institute of Flectrical and Electronics Engmneers, Inc.
Printed in U.S.A. Annals No. 708AS5007
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parameter variance 0,’, by
o [(pli)) = uz,/LL.. (Z)

The sample variance as a funcaon of £ is an important figure
of merit for a particular featur. For example, il the tcatures
are more tightly clustered together about the samiple mean as
L, increases from L, = 1 (no averaging), then the intraspeaker
variability is decreased, and the parameters would be cxpected
to result in higher performance in text-independent speaker
recognition tasks. Although no “true niean or true variance™
exists for real speech because of physiological vaiiations in
human speech, it is reasonable to assume that at least some
convergence or clustering of parameters will occur wath long
term averaging.

The purpose of this pape: is to define seveial sets of poten-
tially useful long-term features and thea to invesiigate their
statistical properties as a function of the averaging length [ .
In addition, discrimination tests are presented over a smail
homogeneous set of speakers to illustrate the potential benefits
of long-term averaging for unconstrained text-independent
speaker recognition.

Il. FEATURES

To discuss the applicability of long-term feature averaging in
a quantitative manner, we have chosen three different feature
sets as the basis for analysis. Some of these features reflect
physiological characteristics more closely than others.

A. Fundamental Frequency Features

Due to physiological considerations such as the length and
thickness of the vocal folds. and respiratory muscle patterns,
the phonation of a particular vowel with “normal effort” may
result in differing rates of vocal fold vibration (corresponding
to the acoustical correlate of fundamental frequency) for dif-
ferent speakers. For example, a child will have a high funda-
mental frequency compared to an adult because of the child’s
smaller vocal folds.

Although fundamental frequency, along with intensity and
duration, is a controllable attribute of stress and intonation
which may vary widely, each person appears to lave a mean
fundamental frequency value which, if averaged over a suffi-
ciently long period of time, is relatively constant over a reason-
able time span and is independent of linguistic content [8].

In addition, the standard deviation of the fundamental fre-
quency over a long interval of time may carry important
speaker-dependent information. For example. if the speaker
is judged to be a monotone speaker, then the standard devia-
tion would be expected to be relatively small. However. if the
speaker is thought to be an “expressive” or “forceful” speaker,
it would be expected to be relatively large.

B. A Gain Feature

It seems reasonable to assume that one of the characteristics
that contributes to a speaker’s identity is the amount of inten-
sity or gain variation in his speech over time. Subjectively, the
amount of gain variation is possibly correlated with the per-
ception of “dynamic” versus “flat” voices. The actual gain
variation is also a function of phonetic content, word and

phrase stress, and discourse context. For example, for a con-
stant subglottal pressure, the acoustical output energy for an
a/ 1s about 5 dB greater than for a /u/. Also. a larger gain
variation would be expected with an exclamatery as opposed
to a normal declarative sentence. Qur assumption is that, over

a sufficiently long interval of speech, gain variation can bhe °
& T £

considered part of the indwvidual speaker’s characteristics.
That is, a speaker who is judged overall to be an “emphatic™
speaker will have larger gain variation than one who is judged
to have a usually monotonous voice.

In the measurement of gain variation, 1t is very important
that results be only a function of speaker characteristics and
not absolute system gain.  Furthermore, because of the dis-
tinctly different production mechanism between voiced and
unvoiced speech, it is desirable to measure the gain variations
only during voiced speech. A normalized gain variation which
satisfies desired physical properties is now defined. If R(n)
defines the energy of V speech samples {s())} in frame 1. then

V-1

R(m)= 3" s(. (3)

=0

The sample mean and sample variance of R (n) over L, voiced
frames is then defined by

R ={R(ny 4)
and
ok =UR(n) - R)™ (5)

where () will be used throughout to denote averaging over [,
voiced frames. The normalized gain variation § is then defined
by

o= Og /R. (6)

If the overall system gain is changed by a constant value, § is
unaffected. Furthermore, & is nonnegative with & =0 only
when og = 0. Physically. 8 =0 means that the speech enve-
lope (more precisely. the frame energy) is unchanged over the
complete range of voiced speech analy zed.

C. Spectral Features

It is well established in the literature that one of the acousti-
cal features that tends to differentiate one particular speaker
from another during voiced speech production is the glottal
sound source shape [15].

Although the spectial slope of a single glottal pulse can vary
overa wide range from nearly whispered speech to very intense
vocal effort, for normal conversational speech it is expected
that an average glottal source spectrum could be obtained over
a relatively long interval of speech that would have relatively
small intraspeaker variability.

Unfortunately. glottal volume velocity waveform estimation
from speech is a nontrivial task (7], [12], [16]. A more di-
rect method for automatic real-time analysis is to use a param-
eter set that is related to the smooth characteristics of the
spectrum, which is independent of fundamental frequency or
gain. With linear prediction analysis, obvious possibilities are
filter coefficients, reflection coefticients, or log area fungtions.
Sambur [17] compared these coefficients in a speech recogni-
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tion experiment and decided to make use of the reflection F =
coefficients.  Although reflection coefficients are nonlinearly . C"w[E,ER 1%&&&5
related to the more physically meaningful smooth-spectral and | . | "
log-spectral model from linear prediction analysis. there is ' ey '
ample evidence that they do contain important speaker- | anaog | | | sps.a DEC
dependent information that is not contained in fundamental FILTER B et i ?’5%1;222%% " 7] eOP1I/as
frequency- or gain-related parameters. For example, in the ¥
case of a first-order filter, M = 1 a smooth spectral model can 1 b
be physically and mathematically related to the first reflection | OSCILLOSCOPE k 1 D /A fe TEN-A0
coefficient. This model [11, p. 139] has a spectral flatness | VIR
given by Fig. 1. Block diagram of system for processing speech

e —— e —

—

Z(1/4)=1 - k3, (7)

If the speech sample being analyzed has a nearly flat spectral
trend, k, approaches zero and the spectral flatness approaches
unity. Asthe spectral slope increases negatively, k, approaches
-1 and the spectral flatness approaches zero.

Based upon the spectral matching properties of linear predic-
tion [il, p. 134], we would assume that preemphasis of the
data would be beneficial since the reflection coefficients
would then carry more information about the spectral struc-
ture at higher frequencies.

It would also seem reasonable that if long-term, spectrally
related features are desired which minimize intravariability,
only voiced speech should be analyzed. Substanual differences
exist in the physiological mechanisms which produce voiced
and unvoiced sounds. Since the excitation for unvoiced specch
is generally assumed to have a flat spectrum, the difterence in
spectral slope between voiced and unvoiced sounds may be on
the order of 8-16 dB. With only voiced sounds, some variation
will still occur since different articulator positions will cause
variations on the acoustic loading at the glottis, affecting the
glottal source shape. This variation, however, is expecied to
be substantially less than that due to glottal source variations
in voiced-unvoiced speech production.

D. Summary of Feature Definitions

As features we study the foilowing.
1) Fo average

xy = F, = (Fy(n)). (8)
2) Standard deviation of F,
xy =ap, =([Fo(n) - Fo] 2, )
3) Sample gain variation
x3 =ap/R (10)
where
R=(R(n)) (n
and
og ={[R(n)- R) /2, (12)
4) Spectrally related features (reflection coefficient averages)
Xie3 =(ki(n))  for i=1,2,-- M. (13)

The feature vector x is defined by
xT =[x 0 Xyum) (14)

where T denotes transpose.

I1l. PROCEDURES
A. Data

The data used for the analysis were obtained during i
views of four speakers. Each interview was then edited so that
only the interviewees' voices remained. The total duration of
each edited interview (including pauses) was typically 15
18 min. The total data base used for this study was approxi
mately one hour in duration. No special precautions or
recording conditions were imposed on the experiment. Inter-
views were conducted mn normal room environments with a
dynamic microphione and an audio tape recorder. So that a
small number of speakers could be used with some generality
in extrapolating results, a homogencous population of four
male speakers was chosen, each having somewhat similar
speech characteristics and relatively narrow fundamental fre-
quency ranges. Histograms of the raw nonaveraged fundamen
tal frequency values showed substantial overlap among the
four speakers.

B. Digital Processing of Data

The audio tape was digitally processed using the system
shown in Fig. 1. Each test segment was recorded onto a disk
using conventional procedures. A novel part of the procedure
1= based upon the use of a high-speed signal processor and os-
cilloscope {for visual feedback during processing). Using an
array -processing software system, it is possible to process the
data in real time at a S0 Hz analysis frame rate from a Fortim
environment. Processing includes modified cepstra! pitch
period and voicing detection, gain calculation, linear prediction
analysis for reflection coefficients, and a running mean and
mean-square computation of these parameters.

The procedure for generating output feature vectors to be
used in the statistical analysis is shown in Fig. 2. A counter
for frame n is incremented and one frame of speech is ana-
lyzed. The parameters used are: sampling frequency f =
6.5 kHz, number of analysis coefficients M = 10. number of
samples for reflection coefficient computation = 128, and the
number of samples for /., and gain parameter analysis = 256
(40 ms). The analysis frame rate is 50 Hz. Preemphasis of the
speech data is applied using a differencer. 1 - 27",

Fundamental frequeicy estimation is performed with a mod-
ified cepstral technique. After the spectrum has been com-
puted,a symmetrical window function is applied that smoothly
tapers from unity at 1000 Hz to zero tfrom 1500 Hz to /2
This simple modification resolves most of the voicing problems
one obtains with the usual cepstral analysis method since only
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Fig. 2. Procedure for generating output feature vectors.

the most consistent region of harmonic structure is used [3].
Two frames of delay are included in the system so that some
amount of error detection and correction can be applied in the
pitch period estimation. One additional test has been found
necessary for obtaining meaningful feature vectors. A
max (Fo) and min (Fo) value are chosen for the speaker being
analyzed to ensure against gross errors causing the fundamen-
tal frequency features from being dramatically affected If
min (Fy) < Fo < max (Fo). the frame is judged to be voiced
and the long-term averages are updated. The frame counter is
incremented and if /> L, the resultant features vector x is
output to disk, / is reset to zero, and analysis then continues.

IV. EXPERIMENTS
A. Experiment 1- Statistical Variation as a Function of L,

The complete edited audio tape for speaker 2 (approxi-
mately 18 min in duration) was analyzed to extract long-term
averaged feature vectors for several L, conditions. As a time
reference, L, = 1000 corresponds to approximately 70 s. The
total number of vector samples obtained is approximately
inversely proportional to L.

The unbiased variance estimate of the feature x = (p(i))
based upon the speech parameter p is

: L[-l
= s i) - %2
0 (x) 51 :Z-B [Kp() - X) (15)
where
Lg-1
fELL t (p(i)). (16)

f i=0

Each p(i) explicitly denotes an individual feature, and Lyis the
number of feature vectors obtained over the total speech dura-
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Fig. 3. Standard deviation of Fo related features as a function of the
number of voiced frames £,
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Fig. 4. Standard deviation of gain reiated features as a tunction of the
number of voiced frames L.

STANDARD
DEVIATION

tion. Note that Ly is actually a function of L, since the total
duration is fixed. The sample mean X is thus independent of
L, except for sampling variation in the real-time analysis be-
cause it is not possible to start analysis at precisely the same
location on the audio tape when L is changed. The true vari-
ance g} is estimated from a3 = 0?(x) with L, = 1. Features
which themselves are based on variances (such as xz = 0p, and
X3 = ok,’k') do not allow for a true variance estimate. The
samiple standard deviations of the fundamental frequency-
related features are shown in Fig. 3 as a function of I, The
estimated standard deviation about the long-term fundamental
frequency averages is reduced from about 18 Hz for L, = 10 to
about 6 Hz for L, = 1000. These values are somewhat higher
than the long-term F averages reported by Horii [8]. How-
ever, this experiment is based upon unconstrained conversa-
tional speech, whereas Horii’s experiment was pased upon a
reading of the “Rainbow Passage.”

The estimated standard deviatior. of the x; = op feature is
surprisingly constant, until at least on the order of 7-10 s of
speech (L, > 100) have been analyzed. Increasing L, from
100 to 1000 decreases a{x,) from'12-6 Hz

The variability of the gain variation feature, 0(x3), as shown
in Fig. 4, follows a similar pattern. This particular feature ap-
pears to be a very weak function of L,.

In Fig. 5(a), the estimated standard deviation of the (k) and
(ko) features for speaker D are shown as being representative
of the reflection coefficient feature set characteristics. Al-
though the estimated standard deviation does not decrease as




}i
|
|

s

334 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH
it
-
2 {
g .
>
w
&3
o
g 1
- .
E: 1
1) {
i
o i
1
Ly
(a)
?
< i
E M )R
ST o= i\lﬁd‘_,az[‘k")'
> |
L
(@
(=]
ax
2 0‘-‘
=
(]
00! T
[ 10 100
Lv
(b)

Fig. 5. (a) Standard deviation of reflection coefficient averages as a
function of the number of voiced frames L. k), (ko' deviations.
(b) Standard deviation of reflection coefficient averages as a function
of the number of voiced frames /.. rms of all coefficient varances.

rapidly as predicted by sampling theory for the case of inde-
pendent samples because of intraspeaker variability, the de-
crease is substantial and is surprisingly linear on a log-log
scale. [Instead of a L;%? relation, the standard deviation of
the reflection coefficient features appears to approximaiely
decrease proportionally to a L o3 model beyond £, = 10.

The rms deviation over all (k;) averages is shown in Fig. 5(b).
Over a range of L, from 10 to 1000, the L;"/* model is still
seen to be very accurate for predicting the decrease in reflec-
tion coefficient feature parameter variation as L, is increased.
The measured exponent value is certainly dependent upon the
particular speaker. However, it appears to vary only slightly
from the model discussed for the severai other speaker
measurements.

The estimate of the true variance for the &, ,&,¢, and overall
parameter variance is also shown in Fig. 5(a)and (b)at L, = 1.

A second way oi qualitatively showing the effect of long-
term averaging is to show two-dimensional scatter diagrams for

AND SIGNAL PROCESSING, VOL . ASSP-28, NO. 4, AUGUST 1977

\
|
1Y E
4 RS |
ke . ‘ |
| |
> H |
L | Ly=iO |
. o ——— e et . -— - e
|
l i
f
| |
k. 1 ‘ -~ i
| |
| !
Ly=100 Ly*1000 |
K (k,)
Fig. 6. Scatter plots of ky. (kqo features tor different L, with two

sigma ellipses and principal aves

various values of L,. Fig. 6 shows a scatter plot oi (k) versus
(k,) samples. Each point is based upon L, samples from the
edited audio tape for speaker 2. Shown with the data are two-
sigma ellipses with the principal axes. A dramatic decrease in
the dispersion of the data is seen as [, increases.

B. Experiment 2- Discrimination as a Function of L,

The approach taken here is to investuigate the effectiveness of
long-term averaging for speaker recognition using the ratio of
the between-speaker variance and the within-speaker variance,
without specifying particular speaker recognition experiments.
Since the mathematics of this procedure (Fisher discriminant
method) is discussed elsewhere [1], only the necessary details
will be summarized below.

A within-speaker covariance matrix W is computed, and then
a normalized between-speaker covariance matrix B is found in
terms of the matrix B of Bricker er al. [1] from

B =B/, (17

where L is the number of feature vectors. The normalization

is included so that B’ will depend only upon the sample means.

not upon the number of feature vectors. Figenvalues and

eigenvectors of the equation
By = MWy

are then obtained. The eigenvalues are ordered from highest

to lowest, and as the number of speakers, four, is less than the

number of features, thirteen, all but the first three eigenvalues
are zero {1]:

)\1>A:.>:\3,>A4:R5:"'=R|J=0.

(18)

(19)

A new coordinate system is defined using the eigenvectors of
(18} as base vectors, so that the new coordinate vector y is
related to x through the linear transformation

y=o'x

where @ is the matrix whose columns are the eigenvectors of
(18). The eigenvalues of (18) represent the variance ratios in
the directions of the eigenvectors with A, being the maximum

(20)
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TABLE |

Varianct Rarios oF Lona-Trem Averace Franee Sevvor / 10
i 1000
| VARIANCE RATIO
FEAIURES —
Ly =100 I Ly =1000
x = (Fy) 0332 2.321
xp* (Og) | 0004 = 0043
x3= (8) ons 0329
s (k) 0.08! 0.305
xg= (ka) 2721 16118
xe= (k3) | 0221 1216
xr= (kq) 0.367 2023
2= (k¢ | 0307 2.002
xg= (kg) ‘ 2.315 11.452
xor{hz) | 0.158 | 0650
xy = (kg) 1 0.511 2.591
e = (kg : 0.185 0.977
x3® (ko) | 0403 = 0978
TABLEF I
Variance Ratios oF Trassrormen Lova-Ters Aviract Franiee Sioros
L. = 100 axp 1. = 1000
TRANSFORMED | VARIANCE RATIO
FEATURES | | . noo*'er = 1000
Y 10.959 115368
Y2 0.972 7956
ys 0.393 1. 730
Ye e e
' e
i3 0 ! 0

variance ratio, A, being the next largest (in a direction orthog-
onal to #,), etc. Variance ratios can also be computed in the
original coordinate system as a method for measuring relative
effectiveness of features.

Tables 1 and II show the variance ratios in the original and
transformed coordinate systems, respectively, for L, = 100 and
L, =1000. Except for the fact that parameter correlation is
not taken into account, the variance ratio values can be taken
as quantitative measures of the original parameter’s effective-
ness in speech recognition. For example, we see that o pro-
vides very little discrimination among speakers, whereas (k1)
appears to previde the max:mum discrimination among speak-
ers over all parameters. It is seen that the first dimension in
the new coordinate system results in a substantial'y increased
variance ratio.

33§
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Fig. 7. Scatter plots for speakers A-D along first three Fisher discrimi
nant dimensions (L, = 100)
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Fig. 8. Scatter plots for speakers A-D along fir three Fisher discrimi-
nant dimensions (L, = 1000).

Two-dimensional scatter plots of the first three transformed
dimensions are shown in Fig. 7 for L, = 100 and in Fig. 8 for
L, = 1000. The results are based upon the four speakers A=D.
Also shown are two-sigma ellipses and the principal axes for
each speaker distribution. In Fig. 7 it is seen that 4 and D are
essentially uniquely separated from B and C in at least one
plane (¥, - ¥;). A relatively large overlap does occur, how-
ever, for B and C in all planes. A cursory comparison of Fig. 7
and the relative sizes of clusters in Fig. 6 will illustrate that
substantial benefits in discriminating against different speakers
have been obtained over using no averaging (L, = 1) or very
limited amounts of averaging (L, = 10):

In Fig. 8, it is seen that by performing long-term averaging
with L, = 1000, perfect discrimination is obtained, in this
instance based upon only a two-dimensional transformed fea-
ture representation.

The variance ratios for the input feature variables are shown
in Table I for L, = 100 and L, = 1000. If the variables were
statistically independent, these ratios would differ by a multi-
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plicative factor of 10 rather than the smaller factors indicated
in the figure. The ordering of the features in terms of variance
ratios is of some interest. The fifth feature, k;, clearly shows
the largest variance ratic, with the ninth feature, kg, the next
largest. These coefficients correspond to the coefficients for
the highest power of z™! in the models of order 2 and 6 found
from linear prediction analysis. The two-pole model has been
used in earlier recognition tasks [18].

The variance ratios for the first three features. tundamental
frequency, its standard deviation, and sample gain variation,
are smaller than what one might expect from intuition. Part
of the reason may lie in the fact that the speakers were chosen
to have similar fundamental frequency ranges.

The variance ratios for the new coordinate system, the eigen-
values of (18), are shown in Table II. From these ratios and
the scatter diagrams of Fig. &, it can be seen that very clear
separation of the speakers is indicated for the long-term aver-
age case of L, = 1000 by using only the first two coordinates,
¥y and y,, in the direction of the eigenvectors @, and &,

V. Discussion
A. Parameter Variability Over Davs, Weeks, Fic

This initial study has been restricted to the study of long-
term averages taken from one session. This is probably the
reason why the standard deviation of the long-term averages
tends to have a monotonically decreasing behavior. Although
some amount of intraspeaker variability is reflected in the data.
additional variability will occur when results are obtained from
sessions separated by days, weeks, or months later. In several
studies over linguistically constrained units. this effect has
been shown to be severe beyond several months for short text-
dependent segments [4]. A large data base extending over
several months is now being generated for studying these ef-
fects in conversational speech,

B. Accuracy of Voicing Decisions

Since all long-term statistics are made only during voicing, it
is very important to know that realistic voicing decisions are
made. Spectral slope and normalized gain variation are direct
computations requiring no decisions (except for voicing) and
are, therefore, very robust.

If the threshold sett'ng for voicing and pitch period detection
1s set too high or t00 low, the effect can be catastrophic. At
one extreme, if the voicing threshold is tuo high, very few
frames will be included in the statistics as being voiced (al-
though they will be very reliable estimates) and, furthermore,
transitions in which considerable fundamental frequency varia-
tions may occur are likely to be missed, causing the measured
fundamental frequency standard deviation to be unrealistically
small.

At the other extreme, if the threshold is too low, there will
be a tendency to define fundamental frequencies near the
maximum allowable frequency (minimum pitch period) (near
400 Hz) during actual voiced speech and at random values
throughout the rest of the allowable range during unvoiced
speech. Although a pitch period and voicing decision program
with several frames of delay is used for error detection and

correction, 1t is essentially impossible to separate accurate esti-
mates from gross errors beyond some reasonable threshold.

C. Assumpiions Versus Experimental Resulrs

It was assumed that (F,) carries important speaker informa-
tion. The o[(Fy)] versus L, graph in Fig. 3 showed a signifi.
cant monotonic decrease as L, was increased. In additior the
variance ratio was relatively high (even though speakers were
purposely chosen with similar fundamental frequency ranges)
Therefore, this assumption appears valid. The assumption that
olog_ ] is meaningful does not appear to be true for conversa
tional speech. The variance ratio for this feature is extremels
small. This result contradicts that shown by Mead [13], where
the use of the first through the fourth moments of Fy and of
the first four differences of F, (resulting in 20 features) was
suggested. Our experience indicates that unless hand-marked
or hand<orrected F, contours are used, very significant biases
In results can occur because of very few gross errors in Fo esti-
mation. Higher order differences and moments only magnify
these biases.

The standard deviation of the gain deviation feature as a
function of L, shows a weak relationship to expectations from
statistical sampling theory. In addition, the variance ratios for
the gain deviation feature are relatively small. Although some
discrimination is obtained. what we have seen is that not only
is there substantial intraspeaker variability for this parameter.
but that, in addition, considerable overlap in the gain feature
values occurs between speakers. Other measures of fundamen-
tal frequency and gain vanations may prove to be more useful
than the ones used here, which are essentially based upon root
mean squares taken about the averages. One possibility 1s the
use of the ratic of geometric and arithmetic means as used n
evaluating spectral flatness {11]

The long-term averages of the reflection coefficients as a set
appear to be the most significant features for speaker recogni-
tion. Not only does the standard deviation of the long-term
averages show a substantial decrease as a function of / v but
in addition, the variance ratios are seen to be relatively large
for most of the parameters

D. Observations on Reflection Coefficient Averaging

Although o(¢k o)) < a({k,)) for all L,. in Fig. 5(a). one
should not be misled into thinking that (k) is a better feature
for speaker recognition. This result occurs because k, inher-
ently has a larger standard deviation than kyo (k) =k, for
L, =1). The important fact to note is that whatever the pa-
rameter deviation is without averaging, due to either linguistic
content or intraspeaker variability, it decreases as L;® where
§ <a< | whenlongterm averaging is applied.

In a recent paper [17). the use of orthogonal linear predic-
tion parameters for use in text-independent speaker rccogn-
tion studies was suggested. Although very high recognition
scores were shown using the orthogonal linear prediction pa-
rameters, we would suggest that substantial reduction in scores
would occur if unconstrained data bases as described here were
usel. Whatever scores are obtained using, m effect, L, =1,
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our results qualitatively indicate tiiat substantial improvements
could occur by incorporating long-term aVEeraging

Each orthogonal parameter was obtained frem a linear com-
bination of all reflection coefficients as

L > k 2

i =3 cik, 2n
where the c;, terms were obtained from a principal component
analysis. The averaged parameters would then be

M
(@f).z C["(k‘). (22)
j=1

Although Fig. 6 shows ~nly the dispersion characteristics for
{ky) and <k,), similar cha:acteristics are obtained for all the
coefficients. The amount of data dispersion will be primarily
due to the value of L, not the fact that a linear combination
of the k; terms (o7 the (k;) terms) has been obtained.

E. Computational Considerations

Studies of this type place & premium on the available pro-
cessing speed of the computer system. It became clear early
in the study that small- or medium-scale computer capability
was insufficient.  For example, the analysis method described
runs in approximately 100 times real time if all operations are
implemented only on the PDP-11 system. The relatively small
data base of speakers for this study would have required over
100 hours of processing time.

Except for the nontrivial costs in software development, we
have found that attaching a high-speed processor to the main
computer system provides 1 very economical solution to the
requirements for real-time processing.

VI. SUMMARY

The properties of long-term feature averaging for three sets
of fundamental frequency related, gain related, and spectrally
related parameters have been investigated. Based upon the
Fisher discriminant method, the rank ordering of the param-
eter sets in importance was shown to be spectral, fundamental
frequency, and then gain. It was also shown that over a long
duration from Z, = 10 to L, = 1000, the standard deviation of
the sample means of the reflection coefficient vectors de-
creased proportionally to 173,

A small number of speakers with relatively homogeneous
characteristics was used to illustiate the effects of long-term
averaging. The data base was of nontrivial duration, somewhat
greater than one hour in length. Furthermore, the text was
unconstrained conversat‘onal speech, recorded under normal
room noise conditions. Analysis was performed in real time
with a high-speed signal processor.

Presently, other spectral representation methods are being

_ investigated and a data base is being developed for performing

text-independent speaker recognition tests without any linguis
tic or structural constraints,
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Abstract

Text-Independent Speaker Recognition
from a Large Linguistically Unconstrained
Time-Spaced Data Base

John D. Markel and Steven B. Davis

A very large data base consisting of over thirty-six hours of
unconstrained extemporaneous speech, from seventeen speakers, recorded over
a period of more than three months, has been analyzed to determine the
effectiveness of 1long-term average features for speaker recognition.
Results are shown to be strongly dependent on the voiced speech averaging
interval Lv' Monotonic increases in the probability of <correct
identification and monotonic decreases in the equal error probability for
speaker verification were obtained as Lv increased, even with substantial
time periods between successive sessions. For LV corresponding to
approximately thirty-nine seconds of speech, text-independent results (no
linguistic constraints embedded into the data base) of 98.05% for speaker
identification and 4.25% for equal error speaker verification were

obtained.




I. Introduction

In recent years, there has been an increasing interest in computer-

based techniques for text-independent speaker recognition (1-6).
Recognition is used here to encompass both speaker identification and
verification (7). The term "text-independent"” has been used in several
different contexts. For example, Atal (1) has used the term in the sens2

of choosing independent randomized test frames from a single sentence to

use against the remaining frames as a reference set. Sambur (4) has used
the term in an experiment where the sentences in the test set were
different from those in the reference set, even though each speaker read

precisely the same list of sentences.

Although useful insight has been gained by these approaches, they were
linguistically constrained. In many practical situations, where text-
independent speaker recognition is desired, there typically will be no
control over the speech being tested. As Beek, Neuberg and Hodge (8) have
pointed out, text-independent speaker identification can overcome problems
which may arise if the speaker is uncooperative, and there is a great
interest for speaker identification over communications channels, which
have no linguistic constraints. Furthermore, there may be days to weeks of

separation between reference and test sessions. ‘

Several other studies (2,3,5,6) have analyzed data with varying

amounts of linguistic constraints. Li and Walker (2) used thirty seconds

of speech read from the rainbow passage (9) recorded once by twenty-two

male speakers and twice by an additional eight male speakers. They did not




specify the number of days separating the recordings. They demonstrated
“that distances among spectral correlation matrices could be used to compare
inter~speaker and intra-speaker differences. However, the same text was

used for all tests, which could be interpreted as a linguistic constraint.

Hunt, Yates and Bridle (6) used approximately six two- to three-minute
long FM radio weather forecasts from each of eleven male and two female
speakers. Bach forecast was divided into twenty- or thirty-second
intervals and 1long-term fundamental frequency and cepstral coefficient
features were computed for twenty-millisecond sequential frames in each
interval. They did not specify the number of days between successive
forecasts by the same speaker. Using Fisher discriminant analysis (10),
they achieved 89% correct speaker identification with independent test and

reference sets. However, the speakers read text with some effort at

uniformity between sessions, which c¢ould also be interpreted as a

linguistic constraint.

In a preliminary study, Markel, Oshika and Gray (5) wused one
fifteen- to eighteen-minute interview from each of four male speakers with
somewhat similar speech characteristics. The interviews were recorded with
an audio tape recorder in a normal room environment. Long-term fundamental
frequency, dain and reflection coefficient features were computed for every
1000 sequential voiced frames (twenty-millisecond windows per frame, fifty
frames per second) in each interview. Using the same Fisher discriminant

analysis (10) as Hunt et al. to transform the data, they achieved perfect

discrimination among the four speakers. These recorded interviews were

considered to be free of linguistic constraints. However, the data were :
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insufficient to obtain statistically significant results, and with only one
session per speaker, there was no analysis of speaker characteristics over

time.

The purpose of this paper is to present results from experiments in
speaker recognition where there were no linguistic constraints on the
speech content (other than the ones implied when the speaker |is
cooperative, and English is used). In comparison with the previous study
(5), results are presented for a larger number of speakers, for multiple
sessions from each speaker, and for a greater number of features.
Furthermore, the effects of time between recording sessions are studied.
For practical implementation, only parameters obtained from the analysis
portion of a linear prediction vocoder (fundamental frequency, gain and
reflection coefficients) were used. (Beek et al. (8) have stated that the
reflection coefficients are currently favored for all-digital narrowband
communications systems.) This study shows that if these parameters are
averaged over sufficiently long intervals of time, such as thirty seconds
or more, the features obtained are essentially free of 1linguistic
constraint, and speaker recognition performance is comparable with some
text-dependent speaker recognition experiments. The linguistic results
agree with Li and Walker (2), who used a smaller data base; long-term
speech features are relatively stable after thirty seconds. Furthermore,
this study shows that if the averaging interval 1is too :10rt, speaker
recognition performance is unacceptable with linguistically unconstrained
extemporaneous speech. In addition, the importance of having a time-spaced

reference set of sufficient size is demonstrated. -
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II. Data Base and Processing Methodology

A data base was collected by recording 170 fifteen-minute interviews
from eleven male and six female speakers. There were ten sessions per
speaker, with each session separated by a minimum of one week. Generally,
the successive sessions were obtained within two to three weeks. One

exceptional separation between successive sessions was fourteen weeks.

All sessions were recorded on a Tandberg 9000X two-track tape recorder
at a recording speed of 7.5 ips. One track was used to record the
interviewer and the other track was used to record the speaker. The
speaker was recorded with a B and K half-inch condenser microphone and
amplifier system in an IAC sound room equipped with a window. The
interviewer was recorded with a conventional dynamic microphone outside of

the sound room. Two-way communication was established using headphones.

Each session began with the speaker reciting his/her name, a password,
a word 1list and the first paragraph of the rainbow passage (9). The
interviewer posed a topic to the speaker, and the remaining time (generally
twelve to thirteen minutes) was devoted to an extemporaneous monolog by the
speaker. The interviewer responded briefly when appropriate, or when it

was necessary to ask a new question for continuity.

A wide range of topics were covered, from describing a job to
describing a frightening experience. Although one might argue that this
approach in some sense constrained the data, casual listening of the

-
recordings demonstrates that this is not the case. The topics generally




provided a springboard for the speaker's thoughts, and the speech was
usually conversatonal, fluent and quite varied. (With one subject, the

suggested topic was consistently replaced by a wide variety of topics.)

Several observations should be noted which may be of considerable
importance in practical situations. After the 1initial recording gain
calibration for each session, no further gain adjustments were made.
Subjects occasionally became bored or distracted, and either lowered their
voice intensity or turned their heads away from the microphone.
Conversely, subjects occasionally became intense on a topic and nearly
"swallowed" the microphone, resulting in substantial low frequency waveform
variablity due to breath bursts. Also, there was some stuttering, throat

clearing, laughter, giggling and poor articulation.

In addition to these conditions, about half of the subjects acquired
various degrees of colds during a two to three week period. BAll of these
cases were recorded in the normal fashion, and no hand editing or deletion
of any data was performed. The data used in this study consisted of only
the extemporaneous speech material from the speakers, excluding the rainbow
passage, word lists, etc. The total duration of the data base is 17
speakers x 10 sessions/speaker x approximately 13 minutes/session, or

approximately 36.8 hours of data.

Several large population and 1long duration data bases have been
reported in the literature (10,11). These were all text-dependent studies
with short names or phrases. However, even the total duration of the large
data base used by Das and Mohn is only one-tenth the total duration of the

data base used in this study. The magnitude of this data base was




extremely valuable for choosing feature subsets and defining reference sets

which spanned varying periods of time.

Each audio tape was manually cued to the location where the
extemporaneous portion of the interview began. Then real-time linear
prediction analysis and disk storage of the analysis parameters was
initiated. The data were low pass filtered at 3250 Hz and sampled at a
6500 Hz rate for compatibility with future applications to telephone
systems and narrowband vocoder systems. The speech samples were
preemphasized with a factor of 0.9, successive 128-point frames were
multiplied by a Hamming window, and the autocorrelation method of linear
prediction was used at a rate of fifty frames per second. The analysis was
performed in real-time under Fortran control using a commercially available
array processing system in conjunction with a PDP 11/45 computer (4,12).
The analysis parameters for each speech frame were ten reflection
coefficients, pitch period (obtained from a modified cepstral pitch
tracker) and gain, and were stored in a quantized format of eight bits (one
byte) per parameter. The process was terminated when the end of the tape
was reached (defined as a thirty-second silence interval). The processing
of each interview resulted in an analysis file of approximately 1000 disk
blocks (512 bytes/block), and all interviews together required nearly half
the total space of a 200-Mbyte disk (340,670 formatted disk blocks). 1In
comparison, it would require ten 200-Mbyte disks to digit-ze all of the
interviews with 12 bits/sample and to store directly without preprocessing.

Next, the analysis files were used to obtain long-term feature

-
vectors, where each vector was the average of Lv successive voiced analysis




frames. Unvoiced and silence frames were not included in this study, since

it was felt that fundamental frequency was an essential speaker-dependent

parameter. The vocoder analysis parameters consisted of fundamental
frequency (the reciprocal of the pitch period), gain and ten reflection
coefficients, For every interval L,, long-term features based upon the
mean, standard deviation and dispersion (standard deviation divided by
mean) of the twelve parameters were computed, resulting in thirty-six-
dimensional feature vectors. This feature set was defined in a reasonably
general manner since analytic techniques for feature reduction may be used

to find the most reasonable feature subsets for speaker recognition.

A summary of the number of feature vectors produced for all 170
interviews is given in Table 1. 1In this table, the data are partitioned
into representative test and reference sets (13). Four choices of L, were
studied, namely Lv = 30, 100, 300 and 1000. The total number of feature

vectors and the average real-time interval per feature vector as functions

of L, are also given.

TABLE 1 GOES HERE

It is important to consider the relationship between a particular

value of L, and the real-time interval of a long-term feature vector. Most

significantly, a fixed number of voiced frames, rather than all of the

-
voiced frames from a fixed elapsed-time interval, was chosen for analysis.
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With extemporaneous speech, there may be intervals of ten to twenty seconds
where very little or no voiced speech occurs (the speaker may pause, cough,
laugh, etc.), leading to a variable voiced frame rate. If long-term
features were a function of the voiced frame rate, then such features would
not be reflective of only a speaker's speech sounds, but also his/her
speech rate and style. While these additional characteristics might be a
source of speaker-dependent information, they were not considered in this
study, and consequently long-term features were made independent of the

voiced frame rate.

The real-time interval for a long-term feature (seconds/feature)
corresponds to a product of the following factors: 1) the number of voiced
frames per feature vector (LV), 2) the reciprocal of the voiced frame to
total frame ratio (or the reciprocal of the voicing duty factor), and
3) the reciprocal of the number of analysis frames per second (or the
reciprocal of the frame rate). In a previous study (5), the voicing
threshold was set such that very smooth fundamental frequency (Fo) contours
were observed on a real-time display system, and as a result, Lv = 1000
corresponded to approximately seventy seconds of real speech. For this
study, the voicing threshold was determined by synthesizing the speech
using the F, contour obtained, and then selecting the threshold that
produced the subjectively best synthesis. The ear appears more sensitive
to voiced speech segments which are synthesized as unvoiced, rather than
the reverse, i.e. buzziness is typically preferred over whispery or hoarse
speech. As a result, more voiéed decisions were made, and LV = 1000 in

this study corresponded to approximately thirty-nine seconds of speech.
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The feature vectors for each interview for each of the above values of

Lv required approximately 301, 93, 33 and 13 disk blocks respectively, and

-a total of 74,800 disk blocks were required to store the feature vectors

for the various L, conditions for the 170 interviews. These data were then

further processed as described in the next section.

III. Experiments in Parameter Variability

A. Intra-Speaker Variability

In a previous study (5), the within speaker (intra-speaker) variablity
of the features for one male speaker was demonstrated to be a monotonically
decreasing function of L, from L, =1 to L, = 1000 for a single fifteen
minute session. Using the data base in this study, it was possible to
study the intra-speaker variability for a larger number of male and female
speakers, and in addition, it was possible to study the intra-~speaker
variability for cumulative sessions. If individual sessions are described
by S(i), i=1,10, then cumulative sessions may be described by C(i), i=1,10,

where C(i) = S(1)+S(2)+...+S(i).

The standard deviations of the long-term averages of the fundamental
frequency and the first reflection coefficient, denoted as <F0> and  <k;>
respectively, as measured over the cumulative sessions C(i) for one male

and one female speaker, are shown in Figure 1.
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For both speakers and for each set of cumulative sessions, <Fo>
decreases as LV increases. This behavior demonstrates that over long
intervals, a speaker's average fundamental frequency is (probably) a good
estimator of a characteristic or "habitual" value, and for successive long
intervals, the deviation from the habitual value is small. For short
intervals, influences such as speech prosody may mask the habitual value,
and successive short intervals will deviate more widely from each other.
This concept of habitual fundamental frequency is paralleled by the conc:pt
of habitual (perceived) pitch; the latter is used in speech therapy as a
measure of acoustic improvement during treatment of a functional or organic
voice disorder (14), and is an important factor in listener-based speaker
recognition. For both speakers and for each value of Lv, there is a trend
for <Fo> to increase as more sessions are included (although there are
exceptions, e.g. for the female speaker, <Fo> for C(l) is greater than
<Fy> for C(2)). The dependence of <Fy> on L, can approximately be
described as proportional to Lv'l/z, which agrees with the theoretical
relationship between the variance of a set of samples of a stationary
random process, e.g., the Lv samples of F,, and the variance of the process
(5). In absolute terms, the standard deviation of the 1long-term
fundamental frequency averages, over a time span of more than three months,
varies from 17-23 Hz at L, = 30 to 4-8 Hz at L, = 1000 for the male

speaker, and from 28-33 Hz at Lv = 30 to 8-11 Hz at L, = 1000 for the

female speaker.

The behavior of <k;> as L, increases mirrors the behavior of <Fjy> as

Lv increases. Since the value k; is a monotonic function of ' a%» spectral

slope of a first-order linear prediction inverse filter for speech (5,15},
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then a parallel explanation in terms of "habitual spectral slope" may be
given, 1i.e., the longer the interval, the better the estimate of the
habitual spectral slope. However, as more sessions are included, the
behavior of <k1> differs from the behavior of <F0>. For a given LV,
there is essentially no measurable increase in ki variability as the time
period increases from one fifteen minute session to a period of nearly
three months, with all ten sessions included. This trend is observed for
the other speakers and the other long-term reflection coefficient averages,
thus substantiating the presence of an "habitual spectral characteristic"
for each speaker. Since the reflection coefficients are used to describe
the vocal tract shape in an acoustic tube model (16), the result implies
that the physical characteristics of a subject's vocal tract show no

observable changes over at least several months.

Furui et al. (17-20) have examined speaker variability over intervals
from a few weeks to several vyears. Their studies dealt with the
variability of repeated word lists and short sentences. They found that
for increasing time intervals from about three weeks to three months,
spectral parameters such as reflection (PARCOR) or cepstral coefficients
showed increasing variation. 1In contrast, the standard deviation of the
reflection coefficients in this study show essentially no variation over
time. Perhaps the data of Furui et al. were too linguistically

constrained, and speakecs never approached their habi-ual spectral
characteristic.
In summary, inter-speaker variability based on averaged features

- i
decreases monotonically as the averaging interval increases., lturthermore, 7
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for a large averaging interval, inter-speaker feature variability is
relatively consistent over a time period of three months. The next aspect
of this study is a comparison which includes the intra-speaker information,
e.g. a feature-by-feature analysis which uses the values of each feature
from all subjects. If some features have small inter-speaker variance
compared to the intra-speaker variance, then those features will not be
useful for speaker recognition, and the performance of a <classifier

designed to recognize speakers from these features may be poor.

B. Variance Ratio Analysis

One method of measuring the usefulness of a feature for speaker
recognition is the F-ratio or variance ratio (also referred to as the
generalized Fisher discriminant) (7,10,19). The variance ratio of a
feature is the quotient of the inter-speaker variance and the intra-speaker
variance (l11). 1In general, the lérger the variance ratio for a particular
feature, the greater the probable contribution of the feature 1in
distinguishing the speakers (13), but this property is strongly dependent
on the data and the experimental procedure. However, the variance ratio
does not account for inter-feature correlations, and if two features with
high variance ratios are highly correlated, then the inclusion of both

parameters might be somewhat redundant (7).

1. Trends as a function of population

4
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The variance ratios for the case LV = 1000
and cumulative sessions 1-10 are shown in Figure 2 for the male and
female speakers separately, and in Figure 3 for twe subsets of the male
speakers. Only the variance ratios of the mean and standard deviation
features are shown. The variance ratios of the dispersion features were
consistently low, and therefore believed to contribute very little toward

speaker recognition in this study.

There are noticable differences in the variance ratios between the
male and female populations. Based on relative magnitudes, the features
< (kg)>, < (kg)> and <k;> would be the most significant for identifying the
male population, while < (kg)>, < (kg> and <kg> would be the most
significant for identifying the female population. 1If the male population

is arbitrarily divided into two equal-sized subsets, there are pronounced

changes in the variance ratios. For the first set of male speakers, <kl>,
<F0> and <k,> have the largest variance ratios, and for the second set of
male speakers, <k,>, <kg> and <k3> have the largest variance ratios. These
results show the need to have a substantially larger speaker population in
order to characterize thé parameters of major importance. However, it is
estimated that to obtain variance ratios which would exhibit consistent
trends for a set of speakers and for subsets of the speakers, a much larger

data base, possibly more than 100 speakers, would be required.

In the previous paper (5), for a smaller and more homogeneous data

base, <k2> and <kg> were found to be the most significant parameters.

These large variance ratios would be physical evidence for the importance {
-
of the first and third formants in voiced speech (5). Tais larger
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population base, however, shows no such relationships. The conclusion is
that for studies with 1linguistically unconstrained speech, parameter
ranking using variance ratios should be used cautiously. The parameters
with large variance ratios may change depending on how the data are

partitioned, and the features with small variance ratios may be important
for achieving good speaker recognition if the data partitioning is changed.
(Conversely, it will be shown that some parameters with small variance

ratios may actually degrade speaker recognition.)

2. Trends as a function of Lv and time-spacing

The variance ratios were determined for the case Lv = 100 and
cumulative sessions 1-10 (Figure 4), and for the case LV = 1000 and
cumulative sessions 1-2 (Figure 5). Comparing Figures 2 and 4, which only
differ by the averaging interval Lv' the variance ratios generally maintain
the same relative relationships, 1i.e. the features which have the
relatively larger variance ratios for LV = 1000 also have the relatively
larger variance ratios for L, = 100. However, the absolute values of the
variance ratios are smaller for LV = 100 than for L, = 1000. Comparing
Figures 2 and 5, which only differ by the number of session:g, the relative
relationships and the absolute values of the variance ratios are similar
for two cumulative sessions and for ten cumulative sessions. However, a
slight decrease in the absolute values of the variance ratig; for ten

cumulative sessions is observed. If the inter-speaker variance is assumed
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relatively constant for two or ten cumulative sessions, then the slight
decrease in variance ratios for ten sessions over two sessions correlates
with the slight increase in standard deviations observed in Figure 1. This

result further establishes that a speaker's habitual features, when

measured over a relatively long interval (greater than thirty seconds), do

not show appreciable changes over time periods up to three months.

3, Further observations

It is also evident that the variance ratiocs for the mean features
generally have larger values than the corresponding variance ratios for the
standard deviation features. The variance ratios for the dispersion
features are in turn substantially lower in value than the corresponding
variance ratios for the standard deviation features. Features based upon

gain have consistently small variance ratios.

IV. Speaker Recognition

Speaker recognition was based on a weighted Euclidean distance metric
(5,7,11), where the mean vector and inverse covariance matrix for each of

the seventeen speakers were estimated from feature vectors in the specified 1
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reference set. All thirty~-six dimensions were used initially. The
distances between each reference class and each test vector were computed,
and the test vector was assigned to the reference class which yielded the
smallest distance. For speaker identification, a tally was taken of the
number of correct choices. For speaker verification, the distances were
stored for further analysis with a variable distance threshold. The method
of cross-validation in both directions was used (l11), where independent
subsets of the data were cyclically treated as test and reference groups,
and the speaker recognition scores for each cycle were averaged for =he

final scores.

Atal (7) and Bricker et al. (10) discussed three possible choices for

a distance metric. Each metric was a positive semidefinite form which

could be described by d = (X-¥;) M (x-y;)T, where X was a vector to be

classified, Yi was the mean vector for class i, and M was a weighting

matrix. The choices for M were a pooled covariance matrix E'l from all

speakers, an individual covariance matrix ﬂi'l from each speaker, or a
1

discriminant matrix D composed of the eigenvectors of W - B, where B was

the between-class covariance matrix.

The use of the discriminant matrix D requires sufficient knowledge of
the inter-speaker variability, which may be difficult to attain unless an
extremely large number of speakers 1is used. Atal (7) and Bricker
et al. (10) preferred the pooled covariance matrix W over the individual
covariance matrix ﬂ'l. Their rationale was that data limitations (less

samples than dimensions) frequently result in a singular (noninvertible)

covariance matrix, and that one pooled covariance matrix would adequately
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represent all speakers, even though speaker dependent data is contained in

individual covariance matrices and subsequently is not used.

From Table 1, the average number of feature vectors per speaker per

session for Lv = 30,100,300,1000 is 685 (116411/170), 205 (34862/170), 68
{ (11563/170) and 20 (3413/170) respectively. For Lv = 30,100 or 300, with

thirty-six dimensions, the individual covariance matrices were never

singular for any number of pooled sessions. For LV = 1000, with thirty-six

dimensions, the individual covariance matrices were singular if less than
three sessions are pooled. Furthermore, Kanal (14) has suggested that te=
times the number of dimensions is an adequate sample size for good

covariance matrix —estimates with normal ©probability distribution
assumptions. For five sessions and thirty-six dimensions in a reference
class, the factors which relcte sample size to dimensionality for
L, = 30,100,300,1000 are 95 (685*5/36), 28 (205*5/36), 9 (68*5/36) and 3
(20*5/36) respectively. For Lv = 1000, sessions as long as forty-five
minutes would have been necessary to produce a factor near ten, but a

factor as large as ten is probably not needed for features which are

themselves the average of 1000 frames of data. However, fifteen minutes
was a sufficient duration for the other wvalues of LV, as well as an upper
limit of endurance for the subject and interviewer. It was felt that the
advantages gained through the use of individual covariance matrices
outweighed potential problems of undersampling the speaker-'s statistics.
In a practical situation, relatively long sessions would be necessary for
sufficient accumulation of speaker's reference data, but thereafter the

speaker could be verified approximately every thirty-nine seconlg,
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A. Trends as a function of Lv

For the first series of tests, the first five sessions were treated as
the reference data, the second five sessions were treated as the test data,
and then vice-versa. Results are shown in Table 2. In Table 2a, it is
seen that the average scores for the probability of correct identification
P(CI) monotonically increase from 60% to nearly 92% as Lv increases from 30
to 1000 respectively. A confusion matrix of identification errors shows
that no one speaker is more difficult to identify than any other speaker.
In Table 2b, as L, increases, the speaker verification equal error
probability (probability of false acceptance P(FA) equals the probability
of talse rejection P(FR)) monotonically decreases from 43.1% to 8.8%. This
trend is principally due to the P(FA) behavior, since the P(FR) behavior
does not change appreciably with L (5). Although the distance threshold
for a given probability of correct acceptance and fixed dimensionality
(under multivariate normal assumptions) may be analytically obtained, the
distance threshold for the equal error probability can only be determined
experimentally. In Table 2c, the equai error probability distance

threshold is seen to monotonically increase as Lv increases.

TABLE 2 GOES HERE
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It 1is interesting to illustrate the difference between text-
independent speaker recognition with and without linguistic constraints.
Sambur has proposed an orthogonal linear prediction set of parameters for
text-independent speaker recognition (4). Within the context of a
linguistically constrained experiment where all speakers spoke the same set
of sentences, Sambur's text-independent results (in the sense that the
reference sentences were different from the test sentences) were near 94%.
The orthogonal linear prediction parameters are essentially equivalent to a
linear transformation of the long-term reflection coefficients averages
used in this study if L =1 (equivalent to no averaging). If all
linguistic constraints are removed, and if little or no averaging is used,
the results of Table 2 indicate that the speaker identification scores fcr
a true text-independent situation with a reasonable number of speakers wilil
be quite poor (even for L = 30, P(CI) is bounded from above at 62%). A

similar statement follows for the case of speaker verification.

B. Trends as a function of time spacing

Rosenberg (21) has noted that one of the most important considerations
in designing a data base is the time period over which -tterances are
collected and the methods for establishing reference patterns over time.
Following the pictorial scheme of Furui et al. (14-17) for illustrating
reference and test sets over time, speaker recognition for fou: gases shown

in Pigure 6 were investigated. Reference sets were composed of from two to




22

five successive sessions (with a time interval of at least one week between
sessions). No comingling such as odd-numbered reference sessions and even-
numbered test sessions was allowed. For each case, the reference and test
sets were composed of equal numbers of successive independent c~ssions, and

two-direction recognition tests (as described above) were made for the four

L, cases.

The results are presented in Table 3. It is seen that for all Lv
conditions, higher scores were obtained as the number of cumulative

sessions increased.

TABLE 3 GOES HERE

The differences in the speaker identification score between the first
two sessions and the first five sessions is arournd 15% for all Lv cases
shown (L = 1000 was not used for two sessions since the covariance
matrices were singular). It is interesting to note that in a text-
dependent speaker verification experiment with different parameters and
approaches, Luck (22) found that speech samples collected over a five week

period gave the best results.

C. Trends as a function of feature subsets

s et i, st il .. .
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In a previous section, it was noted that the dispersion features had very
small variance ratios, whereas the mean features as a group consistently
had the largest variance ratios. How would recognition scores compare if
the dispersion features were omitted, or if only the mean features were
included? The recognition test for LV = 1000 and five sessions per
reference and test set was repeated using several different feature
subsets, based on an analysis of the magnitudes of the variance ratios. In
one case, only the twelve mean features were used, and in a second case,
only the twenty~-four mean and standard deviation features were used. The
average scores for the two cases were P(CI) = 93.6% with
P(FA) = P(FR) = 14.5%, and P(CI) = 96.8% with P(FA) = P(FR) = 7.2%
respectively. For comparison, the comparable average scores for all

thirty-six features (Table 2) were P(CI) = 91.6% with P(FA) = P(FR) = 8.8%.

Not only did both of these new cases based on feature subsets yield
better scores than the original thirty-six dimension feature set, but in
the second case, the identification score was markedly increased by more
than 5%. This result is a significant practical illustration that the
inclusion of some parameters which would hopefully improve performance (or
at worst case would have no effect on performance), can sometimes actually
degrade the system performance in an open test. 1In a closed test with the
distance metric used in this study, where a reference set also is used as a
test set, this theoretically cannot happen. Closed tests on-this data base
verified that monotonic increases in the number of features produced
monotonic increases in the P(CI) and monotonic decreases in equal error

"probability P(FA) = P(FR). -
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This improved performance by eliminating features with relatively
small variance ratios was the basis for one additional test with a feature
subset. In considering the remaining twenty-four features, the gain-
related features had very small variance ratios, and furthermore, the
inclusion of gain-related features was difficult to physically justify. 1In
fact, it could be argued that even if these features helped, they should
not be included because they may simply reflect a speaker's position,
interest, etc. during the recording session. Therefore, the recognitica
test with only twenty-four features was repeated with the gain-relatzd
features removed, and the performance of this last test with only twenty-
two parameters was better than any previous test. The final results of
this study using only the twenty-two fundamental frequency and reflection

coefficients long-term averages are shown in Table 4.

TABLE 4 GOES HERE

These results are extremely promising for future studies in many areas of
speaker recognition., This substantially large testing effort (over eighty
million distance measurements) has shown that realistic and acceptable
speaker identification and speaker verification can be achieved with

text-independent linguistically unconstrained speech.

The cumulative probability functions (Figure 7A) and the probability

density functions (Figure 7B) for false rejection and false acceptance may

be used to compare the inter- and intra-speaker distances 1in the
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verification task. These curves are derived from the first half of the
final speaker verification test with 22 features, Lv = 1000, reference
sessions 1-5 and test sessions 6~10. The equal error point is graphically
depicted as the crossover point of the two cumulative probability curves in
Figure 7A. This equal error point is found at a distance threshold where
the probability of false acceptance (i.e. acceptance of an imposter) is
equal to the probability of false rejection (i.e. rejection of a correct

speaker) .

The probability density functions (pdfs) in Figure 7B show the
distribution of the intra- and inter-speaker distances. The crossover
point in Figure 7A divides each of the pdfs into two sections, with the
area under the intra-speaker pdf tc the right of the dividing line equal to
the area under the inter-speaker pdf to the left of the dividing line. For
this data, the equal error crossover point is close to the intersection of
the two pdfs, but only identical and symmetric pdfs will always have

identical crossover and intersection points.

For test sessions 6-10 with L, = 1000, there were a total of 1708 test
vectors from the 17 speakers. The distances between each of these test
vactors and the correct reference speaker comprise the 1intra-speaker
distance space. A histogram of these intra-speaker distances is shown in
Figure 8A. The mean and standard deviation of the histogram distances were
used to approximate normal and log-normal distributions. .For the open
test, there is no underlying theoretical distribution, and a chi-square
test was used to measure the goodness of fit of the normal and log-normal

-
distributions. The log-normal distribution had the smallest chi-square
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measure. Analogously, the distances between each of the 1708 test vectors
and each of the 16 incorrect speakers (i.e. eliminating the reference
speaker who is a correct match to the test vector) comprise the inter-
speaker distance space. A histogram of the 27,318 inter-speaker distances
is shown in Figure 8B. A log-normal distribution is a better £fit to the
inter-speaker histogram than a normal distribution, but not as good a fit

as with the intra-speaker histogram.

V. Summary

The significance and value of long-term feature averaging for text-
independent speaker recognition with linguistically unconstrained speech
has been demonstrated. This study used practical analysis conditions of
telephone-range spectral width (0-3250 Hz) and parameters obtained from a
linear prediction vocoder. All parameter-related computations were
performed in real time using 16-~bit integer arithmetic, and all parameters

were further quantized into an 8-bit format for efficient disk storage.

The recording environment was controlled by recording the speakers
with a condenser microphone in an IAC sound room. An important extension
of this work would be to reprocess the "clean-text" audio tapes through

various channel disturbances such as the telephone system to determine the

robustness of the approach in less ideal environmental conditions (20).

-
Also, in some situations, reference data may be obtained 1in a clean
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environment and subsequent speaker recognition attempted in a noisy

~environment. This area also requires investigation.

Although seventeen speakers is not a trivial population size, it
appears that for determining the importance of individual features for
speaker recognition using linguistically unconstrained text, a
substantially larger population base is required. It was found that
features obtained from only one or two sessions of a given population are
relatively unchanged over a much larger number of time-spaced sessions,
where there was at least one week between sessions. Other features should
also be investigated. It has been suggested that mean deviations (21) may
prove more useful than the standard deviations used in this study. Further
research is also required to assess the conditions, e.g., the number of
long~-term samples from a speaker, for obtaining a good estimate of the mean

and variance of a speaker's characteristics.

An assumption throughout has been that only voiced speech frames are
to be used in the analysis. If this assumption was not necessary, or if
only slight degradation occurred if both voiced and unvoiced speech frames
were included, the process would be simplified computationally, and in
addition, 1000 frames per average would correspond to a real time interval

only about half as long as required here.

The best speaker recognition was obtained when 1) five sessions
successively separated by at least one week were used to define the
reference sat, 2) the mean and standard deviation of the long-term averages

of the fundamental frequency and reflection coefficients were used, and

3) each feature was obtained by averaging 1000 voiced analysis frames
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(corresponding to average real-time intervals of about thirty-nine
seconds). With approximately eighteen hours of reference data and eighteen
hours of independent test data from seventeen speakers, spaced over nearly
three months in time, an average speaker identification score of 98.05% and

an average equal error speaker verification rate of 4.25% were measured.
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FIGURES

Standard deviation of long-term features as a
function of L _, the number of voiced frames per
feature vector.

Variance ratios from all 10 sessions as a function
of long~-term mean and standard deviations of
parameters.

A) all male speakers

B} all female speakers. LV=lOOO

Same conditions as Fig. 2 except
A) male speakers:first five
B) male speakers:second five

Same conditions as Fig. 2 except that L _=100:
v

A) all male speakers

B) all female speakers

Same conditions as Fig. 2 except only sessions 1-2
shown:

A) all male speakers

B) all female speakers

Relations between reference samples and test samples
for experimental results of Table 3.

Intra and inter- Speaker Comparisons
A) Cumulative Probability
B) Probability Density Estimates

Distance Histograms and Models
A) Intra-speaker Distances
B) Inter-speaker Distances

TABLES

Number of feature vectors and average real-time
interval (RTI) for each L, condition.

Speaker recognition based on partitioning dc<'ta in half
and with 36 long-term features.

Percent of speakers correctly identified as a function
of the number of reference sessions.

Performance with fundamental frequency and ref =tion
coefficient mean and standard deviation long-term
features, LV=1000 (average real-time interval = 39
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SESSIONS I-10  Ly=1000
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PARAMETERS -

Fig. 2 Variance ratios from all 10 sesgions as a function of
long-term mean and standard deviations of parameters.
A) all male speakers
B) all female speakers. Lv=1000
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Fig. 3 Same conditions as Fig. 2 exzcept
A)male speakers:first five

B)male speakers:second five ' L
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Fig. 4 Same conditions as Fig. 2 except that L =100:
A) all male speakers
B) all female speakers




SESSIONS [-2 Lv=1000

g MALES

MEAN
74 STD.DEV.--~-

(A)

VARIANGE RATIO

g| FEMALES :

MEAN
STD.DEV.---

(B)

VARIANGE RATIO

O I 1 1 i 1 i H i \ M i
G Fy k ko k3 kg ks kg kg kg ko kio
PARAMETERS

Fig. 5 Same conditions as Fig. 2 except only sessions 1-2 shown:
: A) all male speakers
| B) all female speakers
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( AN
SPEAKER IDENTIFICATION

Percent of correct choices based on minimum distance

SESSION Ly

REF. | TEST || 30 I00 | 300 | 1000

-5 6-10 | 61.20 | 7865 | 8820 | 9334
6-10 -5 [ 5987 | 7548 | 8527 | 89.77
AVERAGE 6054 | 7706 | 8674 | 9156

(3
SPEAKER VERIFICATION

Percent of false acceptances and false rejections based
on equal error criterion

SESSION Ly

REF. | TEST | 30 | 100 | 300 | 1000
‘2 -5 | 6-10 | 434 | 278 | 107 | 94

6-10 I-5 428 | 269 10.5 8.2
AVERAGE 43.1 27.4 10.6 8.8

)
SPEAKER VERIFICATION
Threshold distance based on equal error criterion

SESSION Ly

REF. | TEST 30 100 300 | 1000

-5 6-10 | 579 | 752 | 9.78 | 1884
6-10 -5 585 | 758 | 1085 | 2110
AVERAGE 582 | 755 | 1032 | 1997

Table 2. Speaker recognition based on partitioning data in half and with

36 long-term features

L'-"""—-—-~----—---—-




SESSIONS Ly
NO. | REF | TEST || 30 I00 | 300 | 1000
2 -2 34 |5036 |6434 | TI1I18 | —
2 3-4 2 | 5345|6795 | 7531 | —
3 -3 4-6 |54.29 |70.03 | 79.12 | 80.58
3 4-6 -3 | 57.04| 7269 | 82.14 | 89.30
4 -4 58 |5991 ! 7641 | 8673 9285
4 5-8 -4 | 5926 | 7462 | 8345 86.34
5 -5 610 | 6120 | 7865 | 8820 ! 93.34
5 6-10 5 | 5987 | 7548 | 8527 | 89.77

" Table 3.

Percent of speakers correctly identified as a functicn of the

» number of reference sessions
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